Chitooligosaccharides inhibit ethanol-induced oxidative stress via activation of Nrf2 and reduction of MAPK phosphorylation.

نویسندگان

  • Zhiguo Luo
  • Xiaoxia Dong
  • Qing Ke
  • Qiwen Duan
  • Li Shen
چکیده

Chitooligosaccharides (COS) are hydrolyzed products of chitosan and have been proven to exhibit various biological functions. The aims of this study were to investigate the mechanisms underlying the hepatoprotective effects of COS against ethanol-induced oxidative stress in vitro. Human L02 normal liver cells were pretreated with COS (0.25, 0.5 and 1.0 mg/ml) and then hepatotoxicity was stimulated by the addition of ethanol (80 mM). Pretreatment with COS protected L02 cells from ethanol-induced cell cytotoxicity through inhibition of reactive oxygen species generation. Furthermore, ethanol-induced lipid peroxidation and glutathione depletion was inhibited by COS. The antioxidant potential of COS was correlated with the induction of antioxidant genes including HO-1, NQO1 and SOD via the transcriptional activation of nuclear factor erythroid-2‑related factor-2 (Nrf2). Additionally, the protective effects of COS against ethanol were blocked by Nrf2 knockdown. Moreover, signal transduction studies showed that COS was able to suppress the ethanol-induced phosphorylation of p38 MAPK, JNK and ERK. In conclusion, the COS-mediated activation of Nrf2 and reduction of MAPK phosphorylation may be important for its hepatoprotective action.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homocysteine Induces Heme Oxygenase-1 Expression via Transcription Factor Nrf2 Activation in HepG2 Cells

Background: Elevated level of plasma homocysteine has been related to various diseases. Patients with hyperhomocysteinemia can develop hepatic steatosis and fibrosis. We hypothesized that oxidative stress induced by homocysteine might play an important role in pathogenesis of liver injury. Also, the cellular response designed to combat oxidative stress is primarily controlled by the transcripti...

متن کامل

Squid ink polysaccharide reduces cyclophosphamide-induced testicular damage via Nrf2/ARE activation pathway in mice

Objective(s):Cyclophosphamide (CP) toxicity on testis was hampered by squid ink polysaccharide (SIP) via restoration of antioxidant ability in our previous investigations. This study investigated roles of Nrf2/ARE signal pathway in testis of treated mice. Materials and Methods: Male Kunming mice were employed to undergo treatment with SIP and/or CP. Protein levels of Nrf2, keap-1, histone deac...

متن کامل

Protective role of licochalcone B against ethanol-induced hepatotoxicity through regulation of Erk signaling

Objective(s): Oxidative stress has been established as a key cause of alcohol-induced hepatotoxicity. Licochalcone B, an extract of licorice root, has shown antioxidative properties. This study was to investigate the effects and mechanisms of licochalcone B in ethanol-induced hepatic injury in an in vitro study. Materials and Methods: An in vitro model of Ethanol-induced cytotoxicity in BRL cel...

متن کامل

Polyhydroxylated fullerene attenuates oxidative stress-induced apoptosis via a fortifying Nrf2-regulated cellular antioxidant defence system

Polyhydroxylated derivatives of fullerene C60, named fullerenols (C60[OH]n), have stimulated great interest because of their potent antioxidant properties in various chemical and biological systems, which enable them to be used as a new promising pharmaceutical for the future treatment of oxidative stress-related diseases, but the details remain unknown. Nuclear factor erythroid 2-related facto...

متن کامل

Epigallocatechin-3-gallate protects HUVECs from PM2.5-induced oxidative stress injury by activating critical antioxidant pathways.

Endothelial dysfunction and oxidative stress likely play roles in PM2.5-induced harmful effects. Epigallocatechin-3-gallate (EGCG), the major polyphenolic constituent of green tea, is a potent antioxidant that exerts protective effects on cardiovascular diseases (CVDs) in part by scavenging free radicals. The exposure to ambient fine particulate matter (PM2.5) is responsible for certain CVDs. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oncology reports

دوره 32 5  شماره 

صفحات  -

تاریخ انتشار 2014